Linear Algebra [KOMS119602] - 2022/2023

10.1 - Relation between Vectors in a Space

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 10 (November 2022)

1 / 23 © Dewi Sintiari/CS Undiksha

Learning objectives

After this lecture, you should be able to:

- explain the concept of spanning set and linear combination of vectors;
- 2. explain the concept of basis and dimension of vector space;
- 3. find a basis and the dimension of a vector space.

2/23 © Dewi Sintiari/CS Undiksha

Subspace and Linear Combination

3 / 23 © Dewi Sintiari/CS Undiksha

・ロット (四)・ (日)・ (日)・

Linear combination

Recall that linear combination of vectors is defined as:

Let $\mathbf{w} \in V$. Then w is a linear combination of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ if \mathbf{w} can be written as:

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$$

where $k_1, k_2, \ldots, kn \in \mathbb{R}$.

Example

Let $\mathbf{v}_1 = (3, 2, -1)$ and $\mathbf{v}_2 = (2, -4, 3)$. Then:

$$\mathbf{w} = 2\mathbf{v}_1 + 3\mathbf{v}_2 = 2(3, 2, -1) + 3(2, -4, 3) = (12, -8, 7)$$

is a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

4 / 23 © Dewi Sintiari/CS Undiksha

Defining linear combination of vectors

Given a vector (5, 9, 5). How to represent the vector as a linear combination of vectors:

$$\mathbf{u} = (2, 1, 4), \ \mathbf{v} = (1, -1, 3), \ \text{and} \ \mathbf{w} = (3, 2, 5)$$

Solution: Let $k_1, k_2, k_3 \in \mathbb{R}$ be such that:

$$k_1 \begin{bmatrix} 2\\1\\4 \end{bmatrix} + k_2 \begin{bmatrix} 1\\-1\\3 \end{bmatrix} + k_3 \begin{bmatrix} 3\\2\\5 \end{bmatrix} = \begin{bmatrix} 5\\9\\5 \end{bmatrix}$$

This yields linear system:

$$\begin{cases} 2k_1 + k_2 + 3k_3 = 3\\ k_1 - k_2 + 2k_3 = 9\\ 4k_1 + 3k_2 + 5k_3 = 5 \end{cases}$$

By Gauss elimination, we obtain:

$$k_1 = 3, \ k_2 = -4, \ k_3 = 2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linear combination forms subspace

Theorem

If $S = \{w_1, w_2, \dots, w_r\}$ is a set of vectors in a vector space V. Then:

- 1. The set W containing all linear combinations of vectors in S is a subspace of V.
- 2. W is the smallest subspace of V that contains vectors in S, i.e., all the other subspaces containing the vectors also contain W.

Exercise: prove the correctness of the theorem.

6 / 23 © Dewi Sintiari/CS Undiksha

Spanning Set

7 / 23 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Set of vectors forming subspace

- Let V be a vector space, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$.
- Let W be a subspace of V s.t. $\forall \mathbf{w} \in W$,

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$$

where k_1, k_2, \ldots, k_n are scalars.

Hence, $= \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is said to span W. S is called spanning set, and is denoted as:

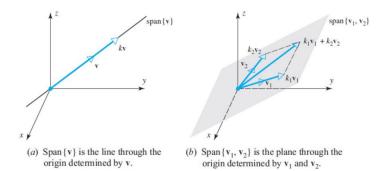
$$span{v_1, v_2, \dots, v_n}$$
 or $span(S)$

8 / 23 © Dewi Sintiari/CS Undiksha

Example: space spanned by one of two vectors Let $\mathbf{v}_1, \mathbf{v}_2$ are noncollinear vectors in \mathbb{R}^3 , with their initial points at the

origin, then:

- span{v₁, v₂} consisting all linear combinations k₁v₁ + k₂v₂, is the plane determined by vectors v₁ and v₂.
- if v ≠ 0 is a vector in ℝ² or ℝ³, then span{v} consisting all scalar multiples kv, is the line determined by v.



9/23 © Dewi Sintiari/CS Undiksha

イロト イポト イヨト イヨト

The following standard unit vectors span \mathbb{R}^3 .

$$\mathbf{i} = (1,0,0), \ \mathbf{j} = (0,1,0), \ \mathbf{k} = (0,0,1)$$

10 / 23 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The following standard unit vectors span \mathbb{R}^3 .

$$\mathbf{i} = (1,0,0), \ \mathbf{j} = (0,1,0), \ \mathbf{k} = (0,0,1)$$

This is because, every vector $\mathbf{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$ can be represented as linear combination:

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

In this case, $\mathbb{R}^3 = span\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$.

10 / 23 © Dewi Sintiari/CS Undiksha

Polynomials $1, x, x^2, \ldots, x^n$ span the vector space P_n

11 / 23 © Dewi Sintiari/CS Undiksha

Polynomials $1, x, x^2, \ldots, x^n$ span the vector space P_n

This is because, every polynomial $\mathbf{p} \in P_n$ can be written as:

$$\mathbf{p} = a_0 + a_1 x + a_2 x_2 + \dots + a_n x^n$$

which is a linear combination of $1, x, x^2, ..., x^n$. In this case, $P_n = span\{1, x, x^2, ..., x^n\}$.

11 / 23 © Dewi Sintiari/CS Undiksha

Determine whether following vectors span \mathbb{R}^3 !

$$\mathbf{v}_1=(2,-1,3),\ \mathbf{v}_2=(4,1,2),\ \mathbf{v}_3=(8,-1,8)$$

12 / 23 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Determine whether following vectors span \mathbb{R}^3 !

$$\mathbf{v}_1=(2,-1,3), \ \mathbf{v}_2=(4,1,2), \ \mathbf{v}_3=(8,-1,8)$$

Let $\mathbf{u} = (u_1, u_2, u_3)$ be a vector in \mathbb{R}^3 , and $k_1, k_2, k_3 \in \mathbb{R}$. If the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 , then it should be:

 $(u_1, u_2, u_3) = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3$

We will check if the following linear system has a solution.

$$\begin{cases} 2k_1 + 4k_2 + 8k_3 &= u_1 \\ -k_1 + k_2 - k_3 &= u_2 \\ 3k_1 + 2k_2 + 8k_3 &= u_3 \end{cases}$$

12 / 23 © Dewi Sintiari/CS Undiksha

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exercise 4 (cont.)

The linear system has coefficient matrix:

$$A = \begin{bmatrix} 2 & 4 & 8 \\ -1 & 1 & -1 \\ 3 & 2 & 8 \end{bmatrix}$$

Note that:

$$det(A) = 2 \begin{vmatrix} 1 & -1 \\ 2 & 8 \end{vmatrix} - 4 \begin{vmatrix} -1 & -1 \\ 3 & 8 \end{vmatrix} + 8 \begin{vmatrix} -1 & 1 \\ 3 & 2 \end{vmatrix} = 20 + 20 - 40 = 0$$

Hence, there is no solution for the linear system, meaning that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ does not span \mathbb{R}^3 .

13 / 23 © Dewi Sintiari/CS Undiksha

Linear Independence

14 / 23 © Dewi Sintiari/CS Undiksha

Linear independence in \mathbb{R}^2 and \mathbb{R}^3

Let V be a vector space. The set $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r}$ is said linearly independent iff the linear equation

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_n\mathbf{v}_n = 0 \tag{1}$$

has exactly one solution, which is the trivial solution:

$$k_1 = 0, \ k_2 = 0, \ \ldots, k_n = 0$$

Conversely, the set $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r}$ is said not linearly independent or linearly dependent, iff the linear combination (1) has a non-trivial solution (i.e., a solution other than $k_1 = 0, k_2 = 0, \dots, k_n = 0$).

15 / 23 © Dewi Sintiari/CS Undiksha

Example of linearly independent set

The vectors $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, and $\mathbf{k} = (0,0,1)$ are linearly independent vectors in \mathbb{R}^3 .

Why?

Note that for scalars $k_1, k_2, k_3 \in \mathbb{R}$, we have: $k_1\mathbf{i} + k_2\mathbf{j} + k_3\mathbf{k} = \mathbf{0}$, that is equivalent to

 $k_1(1,0,0) + k_2(0,1,0) + k_3(0,0,1) = (0,0,0) \Leftrightarrow (k_1,k_2,k_3) = (0,0,0)$

Clearly, there is no solution other than $k_1 = 0$, $k_2 = 0$, and $k_3 = 0$. This means that $S = \{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ is linearly independent.

Similarly, we can show that:

$${f e}_1=(1,0,0,\ldots,0),\,\,{f e}_2=(0,1,0,\ldots,0),\,\,{
m and}\,\,{f e}_n=(0,0,0,\ldots,1)$$

are linearly independent vectors.

16 / 23 © Dewi Sintiari/CS Undiksha

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example of linearly dependent sets (1)

Determine whether the vectors:

$$\mathbf{v}_1=(2,-1,0,3),\ \mathbf{v}_2=(1,2,5,-1),\$$
and $\ \mathbf{v}_3=(7,-1,5,8)$

are linearly independent or not!

17 / 23 © Dewi Sintiari/CS Undiksha

Example of linearly dependent sets (1)

Determine whether the vectors:

$$\mathbf{v}_1=(2,-1,0,3),\ \mathbf{v}_2=(1,2,5,-1),\ \text{ and }\ \mathbf{v}_3=(7,-1,5,8)$$

are linearly independent or not!

Solution:

Note that: $3\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3 = \mathbf{0}$ (show it!). This means that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is **not** linearly independent.

17 / 23 © Dewi Sintiari/CS Undiksha

Example of linearly dependent sets (2)

Determine if the polynomials:

$$\mathbf{p}_1 = 1 - x, \ \mathbf{p}_2 = 5 + 3x - 2x^2, \ \text{and} \ \mathbf{p}_3 = 1 + 3x - x^2$$

are linearly independent or not!

18 / 23 © Dewi Sintiari/CS Undiksha

・ロット (四)・ (日)・ (日)・

Example of linearly dependent sets (2)

Determine if the polynomials:

$$\mathbf{p}_1 = 1 - x$$
, $\mathbf{p}_2 = 5 + 3x - 2x^2$, and $\mathbf{p}_3 = 1 + 3x - x^2$

are linearly independent or not!

Solution:

Note that $3p_1 - p_2 + 2p_3 = 0$ (*show it!*).

Hence, the vectors are linearly dependent.

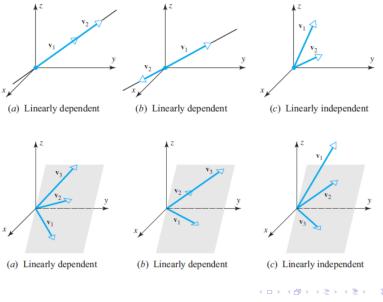
18 / 23 © Dewi Sintiari/CS Undiksha

Do the relevant exercises in the Howard Anton's nook.

19 / 23 © Dewi Sintiari/CS Undiksha

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Geometric interpretation of linear independence in \mathbb{R}^2 and \mathbb{R}^3



Determining linear independence/dependence (1)

Determine the linear dependence of the vectors:

$$\mathbf{v}_1 = (1, -2, 3), \ \mathbf{v}_2 = (5, 6, -1), \ \text{ and } \ \mathbf{v}_3 = (3, 2, 1)$$

Solution:

We check if the vector equation $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3 = \mathbf{0}$ has a solution in \mathbb{R} . The equation is equivalent to:

$$\begin{aligned} & k_1(1,-2,3)+k_2(5,6,-1)+k_3(3,2,1)=(0,0,0)\\ & (k_1+5k_2+3k_3,-2k_1+6k_2+2k_3,3k_1-k_2+k_3)=(0,0,0) \end{aligned}$$

Solve the system:

$$\begin{cases} k_1 + 5k_2 + 3k_3 = 0\\ 2k_1 + 6k_2 + 2k_3 = 0\\ 3k_1 - k_2 + k_3 = 0 \end{cases}$$

Solving the system using Gaussian elimination, we get:

$$k_1 = -\frac{1}{2}t, \ k_2 = -\frac{1}{2}t, \ k_3 = t, \quad t \in \mathbb{R}$$

Hence, the system has a non-trivial solution, so the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.

21 / 23 © Dewi Sintiari/CS Undiksha

Determining linear independence/dependence (2)

Show that the polynomials form a linearly independent set of vectors in P_n .

$$1, x, x^2, \ldots, x^n$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Determining linear independence/dependence (2)

Show that the polynomials form a linearly independent set of vectors in P_n .

$$1, x, x^2, \ldots, x^n$$

Solution:

Let a_0, a_1, \ldots, a_n be such that:

$$a_0+a_1x+a_2x^2+\cdots+a_nx^n=\mathbf{0}$$

We must show that the only solution of the polynomial for $x \in (-\infty, \infty)$ is:

$$a_0=a_1=a_2=\cdots=a_n=0$$

From Algebra, we know that:

Theorem

Every nonzero polynomial of degree n has at most n roots.

This implies that $a_0 = a_1 = \cdots = a_n$ (or, the polynomial is zero polynomial).

Otherwise, it is a nonzero polynomial, having infinite number of roots (that is, $x \in (-\infty, \infty)$), contradicting the theorem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Do the relevant exercises in Howard Antons' book.

23 / 23 © Dewi Sintiari/CS Undiksha

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●